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Measurements of the rapidly changing gaseous composition in engines at low speed 
can be made via narrow tubes which convey the gases to monitoring equipment in 
a less hostile environment. This paper quantifies the extent to which the tube 
smooths out any changes in concentration. Exact (and approximate) formulae are 
derived for the temporal variance as weighted double (and single) integrals of the 
steady flow properties along the tube. Such is the non-uniformity that typically the 
region near the engine contributes 100 times as much to the spreading as does 
the region near the monitoring equipment. The advantages of keeping the sampling 
tubes short and heated are made explicit. 

1. Introduction 
In any combustion chamber, the initiation and progress of the reaction depends in 

part on the local value of the fuel to air ratio. In some situations, for example internal 
combustion engines, there is evidence (Johnson 1979) that it is the variations from 
cycle to cycle in the fuel concentration that are responsible for the well-known and 
undesirable fluctuations in cyclic work output, particularly a t  low engine speeds. 

In  a recent paper, Collings (1988) reported a new technique for continuous 
sampling and measurement of the fuel-air mixture from a gasoline engine, using a 
very fine capillary tube inserted through the sparking plug. The sample was driven 
by the large pressure differences between the engine cylinder and the detection 
apparatus. At low engine speeds the flow could be regarded as being quasi-steady. 
Longitudinal mixing along the capillary tube limits the frequency response of the 
measurements. 

The purpose of the present paper is to investigate this loss of frequency response, 
with the flow regarded as being steady. Because of the marked non-uniformity (of 
temperature, pressure, density.. . ) along the capillary, conventional calculations 
of dispersion (Taylor 1953; Philip 1963a, b,  c) are inapplicable. In  the context of 
dispersion in rivers, Smith (1984) showed that longitudinal non-uniformity could be 
accounted for by taking moments with respect to time of the concentration 
distribution (Tsai & Holley 1978, 1980). Here we shall follow an equivalent pattern 
of calculations, but formulated in terms of the Laplace transform of the 
concentration. The main outcome is an explicit formula (13.5) for the sharpness of 
the response. The formula reveals that it is desirable to make the sampling tube as 
short and as hot as is compatible with the operation of the measuring device. 

Curiously, the shear dispersion coefficient typically increases by a factor of 10 from 
the engine to the monitoring equipment. Yet, the contribution per unit length of 
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sampling tube to the temporal smearing decreases by a factor of 100. So simple 
estimates of the spreading based upon averaged flow properties could be seriously in 
error. 

2. Advection-diffusion equation 
For a narrow capillary, any radial velocity will be negligible except within a few 

diameters of the entry and of the exit. Vorticity within the engine can give rise to 
swirling flow within the initial reaches of the capillary tube. This can help to elim- 
inate any angular variations in velocity or concentration (Rhines & Young 1983). 
Provided that any bends are very gentle relative to the internal diameter, swirl does 
not have much effect upon longitudinal dispersion in tubes (Erdogan & Chatwin 
1967). So, as the starting point of our mathematical analysis, we shall assume that 
there is no radial flow and there is no angular variation in velocity or concentration. 

If the flow is reasonably fast, then the PBclet number will be moderately large, and 
advection will greatly dominate longitudinal molecular diffusion (Taylor 1953). 
Thus, in calculating the concentration c(x ,  r ,  t )  of any one gaseous species, we need 
only account for molecular diffusion across the flow : 

In this equation t is time, x the longitudinal coordinate, a(%) the capillary radius, r 
the dimensionless radial coordinate, u(x,  r )  the longitudinal velocity, and K ( X )  the 
molecular diffusivity . Chemical reactions within the capillary have been ignored. If 
the material of the capillary tube is impermeable to the particular chemical species, 
then 

K a , c = O  on T =  1. (2 .2 )  

az(pa2u) = 0 (2.3) 

The conservation of mass for a steady flow can be written 

where p is the density. For simplicity we shall neglect any radial variation of p (just 
as we have already done for the molecular diffusivity K ) .  The longitudinal dependence 
of the coefficients p,  u, K stems from the compressibility and the considerable 
pressure differences between the interior of the engine and the external gas 
measurement equipment. I n  neglecting the time-dependence of p it  is implicit that 
the transit time along the sampling tube is short compared with the rate of firing of 
the engine. 

3. Laplace transforms 
We suppose that a t  some (possibly remote) starting time to the concentration was 

identically zero throughout the capillary tube. Relative to  that time, we define the 
Laplace transform 

(3.1) e^(x, r ,  p )  = e-PTc(x, r,  to + 7) d7. J: 
The transform of the advection-diffusion equation (2.1) is 

K 
pc"+uazE--aa,(ra,E) = 0, 

u2r 
(3.2a) 
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and 
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~ i 3 , c ” = O  on r =  1, (3.2b) 

C=C,(p) a t  x = O .  ( 3 . 2 ~ )  

Here C, is the Laplace transform of the inlet concentration, which is assumed to be 
uniform across the capillary. 

If the flow properties were uniform with respect to x ,  then (3.2a-c) could be solved 
by separation of variables. Philip (1963a, b, c )  gives the mathematical details, using 
Fourier rather than Laplace transforms. The next section gives the counterpart to 
separation of variables in the non-uniform case. 

4. Eigenfunction expansion 

flow (Smith 1983, $7 ) :  
To solve (3.2a-c), we formally introduce eigenmodes going with and against the 

with 

The overbars denote cross-sectional average values 

f= 2 f ( r ) rdr  1: 
The conditions (4.ld,e) serve to minimize the x-dependence. Thus, in the con- 
ventional case with u, K independent ofx, the adjoint modes Yh+) (x ,  r , p ) ,  y ( - ) (~ ,  r ,p )  
become the same as each other and independent of x. 

The integral identity 
K 

~~a = -a a2 Ypa,  Y L - ) + ~ ~  (4.3) 

reveals that A, increases with the transform parameter p, and for increasingly 
oscillatory modes. Conventionally the labelling of the modes is such that 

(4.4) A, < A, < A, < ... . 
When p = 0 the lowest mode is non-decaying and uniform across the flow 

A, = 0, F:) = !Pi-) = 0 for p = 0. (4.5a, b )  

The formal solution of (3.2a-c) can be written 

Hence, if the capillary tube is reasonably long (compared with a mixing length for 
diffusion across the flow), we can neglect all but the n = 0 mode. Likewise, the more 
rapid attenuation of the large-p components, means that we should focus our 
attention upon small values of the transform parameter p .  
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5. Taylor series for small p 

employ series expansions for small p :  
To solve equations (4.1~-e) for the slowest-decaying modes !Pr) and !Pi-), we 

!Pi*) = 1-pG(*)(x,r)+... ,  ( 5 . 1 ~ )  

A, ==--=---a P P2K G ( + ) ~ , G ( - ) +  ... 
u ua2 

(5.lb) 

The time-lag functions G(+), G(-) satisfy the equations (Smith 1984, equations (4.8), 
(4.2)) : 

+uaZG(+)---a (ra G ( + ) )  = I--  ( 5 . 2 ~ )  
a2r ' @' 

K U 

with (5.2b) 

( 5 . 2 ~ )  

(5.2d) 

Although we shall not extend the full calculations to order p2, the end boundary 
condition (4.le) together with the normalization ( 4 . 1 ~ ) ~  permits us to deduce that 

UP?)  = a-ip 2uG(f)G(-)+... a t  x = 0,L .  (5.3) 
So, at x = L,  the fiux-weighted form of the asymptote (4.6) can be written 

where (5.4b) 

Hence, a t  the exit we can achieve second-order accuracy with only the first-order 
solution. 

6. A comparison problem 
To determine the complete response a t  the exit x = L,  we should need to know c" 

to arbitrary accuracy in p .  This is far beyond the scope of the present calculations. 
Instead, we shall extend the two-term expansion (5.4b) by comparison with the work 
of Taylor (1953). 

For uniform flows, Taylor (1953) derived a constant-coefficient model of the shear 
dispersion process 

a,C+Ua,C-DaiC'= 0, ( 6 . 1 ~ )  

with C =  C, a t  X = 0. (6.lb) 

The use of capital letters is to emphasize the difference between this uniform 
situation and the non-uniform situation studied in the rest of the present paper. 

The Laplace transform solution is 

6 = C,exp(-@), ( 6 . 2 ~ )  

where (6.2b) 
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From the tables of Laplace transforms given by Carslaw & Jaeger (1959, Appendix 
6), we can obtain the inversion 

I (X ,  7 )  C,(t - 7 )  d7, ( 6 . 3 ~ )  

(6.3b) 

7. Linking the approximate and idealized solutions 
As we should expect, there is a strong resemblance between the formulae (5.4), (6.2) 

for the Laplace transforms of the concentrations 2, e. To make the connection 
quantitative, we define the transit time T, and a temporal variance contribution a2 : 

( 7 . 1 ~ )  

( 7 . l b )  

Instead of the truncated series (5.4b) for the decay exponent q5, we pose the formula 

To account for the end corrections in the formula (5.4a), we define the deficit 

(7-3) 

The quotient a 2 / A 2  gives an estimate of the number of mixing lengths between the 
engine and the detection equipment, so should be large. 

An ad hoe extension of the asymptote (5.4) which retains the order-p2 accuracy and 
has an explicit inversion is 

variance A2  : - -  

- 
A2T2{(1 +2pa2/T)i- 112 

2a4 (1 + 2pa2/T) 

The Laplace inversion is 

with 

+-- A2T2 1 (TYexp( - -(T-7)2T) 
fT4 (27ca2)i 7 2a27 

A2T2 T T2-%T -- 2a4 (,2)exp( - 4 2  

(7.4) 

(7 .5a)  

(7.5b) 

2-2 
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FIQURE 1.  Response function for tubes of different lengths. For lighter molecular weight fuels 
the response is even sharper. 

Formulae (12.12a), (13.5), (13.10) are derived later for T ,  vz and A2.  As an 
illustrative example, we specify the isothermal flow conditions 

} (7.6) 
Internal pressure = 10 bar, External pressure = 1 bar, 

Capillary radius = 0.05 mm, Absolute temperature = 500 K. 

(All subsequent numerical examples will correspond to this particular specification 
and with a diffusivity appropriate t o  a fixed chemical component of the hydrocarbon 
fuel.) Figure 1 shows the predicted response function J for different tube lengths L 
measured in metres. For short tubes there is remarkably little temporal smearing, 
though the response becomes less sharp for longer sampling lines. 

8. Time-lag functions 
The velocity profile adjusts more rapidly than the time-lag functions to any 

changes in conditions along the capillary. In  part (a factor of 1.ij2), this is due to the 
much greater stiffness of a no-slip boundary condition (zero value) as compared with 
a zero-flux condition. However, there is also a disparity between the laminar 
viscosity v and the molecular diffusivity K ,  particularly for higher molecular weight 
constituents such as hydrocarbons (a further factor of 6.6). Thus, we shall model the 
velocity profile as being in the equilibrium form 

u = 2 a(l -P) .  (8.1) 
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With this parabolic velocity profile, the e-folding length for the time-lag functions 
to respond to any changes is approximately 

a2a 
1 6 ~ '  

For example, if 

a = 0.05 mm, ti = 200 ms-l, K = 5 mm2 s-l, (8.3) 

then the e-folding length would be approximately 6.25 mm. The magnitude of the 
pressure drop between the inside of an operational engine and the external 
monitoring equipment is such that there can be significant changes in flow properties 
even on distances as short as 6.25mm. Thus, we need to take due account of the 
x-dependence of the time-lag functions G(+) and G(-). 

We introduce an intrinsic downstream coordinate 

(8.4a, b)  

In  terms off; the local e-folding distance is of order &. The field equation ( 5 . 2 ~ )  for 
the time-lag functions becomes 

If, as in (8.1), the velocity profile remains self-similar, then the longitudinal non- 
uniformity is relegated to the right-hand-side forcing. 

To solve (8.5), we can employ conventional self-adjoint modes (neither x- 
dependence, nor p-dependence) : 

ddJn - = 0  on r = l ,  
dr 

(8.6~) 

(8.6b) 

For Poiseuille flow it is not possible to express the modes in closed form. However, 
a convenient single-mode approximation is 

A* = 16, dJ* = .\/3{-1+44r2-2r4), (8.7a-c) 
1 - 

#* = Z' 
The construction of such approximations is discussed in Appendix A. 

We pose eigenfunction expansions 
03 

@*) ( f ; ,  r )  = X Gk*)(f;) dJn(r)y (8.8) 
?Z-1 

The normalization ( 5 . 2 ~ )  precludes any contributions from the zero mode #,, = 1. The 
coefficients Gi*)(f;) satisfy ordinary differential equations 
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FIQURE 2. The weight function W ( ( , g )  for the double-integral formula for the main 
contribution r2((L) to the temporal variance. 

The solutions for the coefficients G:*)are 

( T  ') 'n [ :cash (An( l -  g) )  dg'. (8.10) 
+ sinh A, I 

For GF) greatest weight is given to an upstream region of size l / A n ,  while for GL-) it  
is the downstream values of U ~ / K  that contribute most strongly. 

9. Formula for the temporal variance 

becomes 
In terms of the eigenfunction expansions (8.8u,b),  the definition (7 . lb)  for a2 

(9.1) 

Substituting for GLh) from the integral expressions (8.6), we find that c2 can be related 
to a double integral of u2/K along the capillary tube : 

In terms of the eigenmodes, the weight function W(c, gl)  has the series representation 

W(5,5')  = 5 (6n)2 {A,(Z - 5') cosh A, 6 cosh A, g' 
n=l sinh2 A, I 

+A,(g'-&) coshA,[coshA,(Z-~) coshA,l 

+A,~coshA,(Z-~)coshA,(l-g')} for 5 < g'. (9.3) 

The expression for g' < & requires the interchanging of 5 and g'. 
Figure 2 gives a perspective view of the one-mode weight function for the case 
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FIGURE 3. The weight function V ( &  5') for the double-integral formula for the (end correction) 
deficit variance LP. (Note that the view is at right angles to that in the previous figure.) 

A*l = 10. The dip in values along the diagonal 6 = 5' shows that the shear dispersion 
process is not quite local. It is the correlation of a 2 / K  over distances of the order of 
one mixing length that determines the dispersion. 

An incidental property of W that relates to the construction (8.3) of the one-mode 
approximation (A*,  $*) is 

(9.4) 

Reverting to the use of the conventional x-coordinate, the double-integral formula 
(9.2) for the principal contribution crz to the temporal variance becomes 

The terminology 'slowness ' is sometimes used to describe the reciprocal of a velocity. 
Hence the result (9.5) gives the amount of temporal spreading as a weighted double 
integral over the length of the capillary of the slowness. Equivalently, the importance 
as regards dispersion of a region of the flow is a weighted double integral of the 
amount of time that the contaminant spends in each part of the flow. In particular, 
it is the slower high-pressure flow near the engine that dominates the total spreading. 

10. Formula for the deficit variance 
The initial inefficiency of the shear-dispersion process extremely close to the entry 

x = 0, and the lack of time/distance to respond to the conditions near the exit 
x = L,  are accounted for in the deficit variance 

The double-integral formulation is 

where 

(10.1) 

(10.2) 
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Figure 3 gives a perspective view of the one-mode weight function in the case 
A*l = 10. The rapid decay away from the end points is consistent with the interpret- 
ation of A2 as an end correction to the total temporal variance c2- A 2 .  

An incidental property of V that relates to the construction (8.3) of the one-mode 

11. Exponentially varying flows 
The strongly diagonal form of the weight function W(& f )  as evidenced in figure 2, 

is strongly suggestive that for gradually varying flows the integral is effectively one- 
dimensional. Thus, we replace [, r by the diagonal coordinates x, y : 

x = +(5+"), 7 = +(E-r), ,5 = x + 7 ,  g = x-7. ( 1 1.1 u-d) 

The double integral (9.2) for the principal contribution c2 to the temporal variance 
becomes 

Assuming that U ~ / K  varies exponentially over distances of the order of one mixing 
length, we pose the approximation 

Hence, the 7-integrations only involve W :  

m(x) = 2s; W(x ,  7)dy for x < 81, 
- X  

(11.3) 

(11.4a) 

The resulting one-dimensional integral representation for c2 is 

(11.5) 

Evaluating the necessary integrals, we obtain 

m(x) = r, 2 (' )' (',)' {cosh A, Z cosh A,(Z- 22) - cosh 2 4  2 ( s-l A, ) - A, sinh' A, 1 

+2h,ZcoshAnZsinhh,(Z-2Z)-h, (Z-22) sinh2AnZ 

- A ~ 2 2 ~ ~ ~ h A , ( Z - 2 2 )  coshh,Z-h:22cOsh2A,(l-Z) 

-A: 2(2Z- 32) cash 2A, Z}, ( 1 1 . 6 ~ )  

where Z = min (x, 1-x) .  (1  1.6b) 

The corresponding expression for v(x )  is 
m - 

(',)' {~,Zcosh2~, (Z-~)+s inh2h,Z+~,Zcosh2~,Z}.  (11.7)  
= 2A, sinh2 A, I 
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FIGURE 4. One-dimensional weight functions w and P for the main contribution u2 and end 
correction A 2  to the temporal variance. 

Figure 4 shows the one-mode versions of these weight functions for the special case 
h*l = 10. As in figure 3, the P weight function is localized to the end points. By 
contrast, l@ is virtually constant in the central region : 

(11.8) 

I n  terms of the conventional x-coordinate, the single integral formulae for r2 and 
A2 are 

g2(L) = 2 1;" l@(x) dz, 

d2(L)  = B[$C'(x)dx. 

K f i  

In the slowly varying limit we can obtain the approximations 

( 1 1.9a) 

(11.9b) 

(1  1.10a) 

( 1 1.  l ob)  

The combination A2Ta/u4 arose in the expression (7.5 b )  for the response function. 
The formulae (7.la), (11.9a, b)  for the ingredients T, (T', d2 lead to the result 

( 1  1 .11 )  

A change of scaling for the capillary radius a, transverse diffusivity K ,  flow velocity 
a, or the length L does not modify the value of this combination of terms. For 
example, for uniform Poiseuille pipe flow, with a ,  K ,  a all constant, we obtain 

A2T2 3 
(T4 4 '  
-- - - (11.12) 
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For compressible, isothermal flows with a 10 : 1 pressure drop, our subsequent results 
for T ,  u2 and A’ yield 

-- - 0.68. (11.13) 
A2T2 

IT4 

12. Calculating the flow 
We shall regard the temperature distribution O(x), and hence the viscosity 

distribution p(x ) ,  along the capillary as being prescribed. (This implies rapid 
adjustment of internal energy, which becomes invalid under ‘ choking ’ conditions.) 
For given entry and exit pressures Po, PL we seek the pressure distribution P ( x ) ,  and 
subsequently the slowness distribution l/a(x). 

Cross-sectionally averaged versions of the mass, momentum and perfect gas laws 
are 

dP pa 
- 8 - ,  P=Rp@,  

d 
dx dx a2 
-(pa”) = 0, -- - ( 1 2.1 a+) 

- 
where R is the gas constant. For simplicity, a non-uniform advection term pu&u = 

form drag). This approximation is accurate except for Reynolds’ numbers in excess 
of L / a  (see Appendix B). 

From the perfect gas law (12.lc), we can eliminate p in favour of P. A first integral 
of the mass conservation equation ( 1 2 . 1 ~ )  is then 

s p u a , ~  4 -  has been neglected in the momentum equation (i.e. viscous drag dominates 

(12.2) 

where F is a constant to be determined (a measure of the mass flow rate along the 
capillary). Eliminating a in favour of P, leads us to the momentum equation 

dP 
dx Pa4 

-- = 8RF-. (12.3) 

To match the entry and exit pressures Po,PL, the flow rate constant P must have 

16BF/o @dx = Pi-Pi.  (12.4) 
L 

the value 

a4 

The corresponding solution for P ( z ) ~  is 

(12.5) 

Finally, the solution for the slowness can be written 

For isotherma1 flows, with O and p both constant, the solution (12.6) simplifies 
further : 

(12.7) 
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FIGURE 5. Pipe radius for different values of a. In isothermal conditions the mass flow rate is 
independent of a. 
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FIQURE 6. Logarithmic plot of the velocity distribution along the sampling tube for the flow 
specification given in (12.10). Halving the area of the capillary, or doubling the length, reduces the 
velocities by a factor of two. 

A family of horn-shaped pipe profiles (see figure 5) ,  for which the isothermal mass 
flow rate is the same, is 

( s i t a r  exp (a% a )  
2L 4 . a($) = a m  - 

The formula (12.7) for the slowness becomes 

(12.8) 
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As a quantitative example, we specify 

Po = 10 bar = lo6 kg m-l s - ~  

PL = 1 bar = lo5 kg m-l s - ~  

,u = 2.5 x lop5 kg m-l s-l, 

a, = 0.05 mm, L = 0.3 m. 

( 12.10) 

Figure 6 gives a logarithmic plot of the velocity distribution. In  the constant- 
radius case (a = 0 ) ,  the Reynolds’ number has the constant value 300 but the 
velocity ranges from 21 ms-l a t  the high pressure entry up to 210 ms-’ with Mach 
number 0.47 a t  the low pressure exit. (At even higher velocities there is the possibility 
of ‘choking’.) So, there are indeed substantial changes in flow conditions along the 
capillary. A noteworthy exception is when the change in flow area exactly matches 
the gaseous expansion : 

In  this exceptional case, the velocity is constant at 44 m s-’. 
The appropriateness of the single integral formula (1  1.5) for the temporal variance 

can be assessed by the straightness over a mixing length of the curves in figure 6. The 
estimates following equation (8.3) suggest that near the exit the mixing length is 
only about 6.25 mm. So, we infer that the exponentially varying approximation is 
indeed applicable. 

In  general, i t  is not possible to evaluate the time-of-transit integral (7.la) 
explicitly. However, there are two values of a for which we can obtain explicit 

a = In (Po/PL). (12.11) 

formulae : 
(12.12a) 

(12.126) 

For the numerical specifications (12.10), the formula (12.12a) gives the transit time 
from engine to detector to be 0.0098s. With the same mass flow rate, the horn- 
shaped case (12.12b) yields the transit time 0.0068s. It is the shortness of these 
travel times that permits us to regard the flow conditions within the capillary as 
being steady, even when an internal combustion engine is being monitored. For 
engine speeds beyond 3000r.p.m., account would need to  be taken of the 
unsteadiness. 

13. Evaluating the temporal variance 

proportional to the density (Batchelor 1967, 1.7.29-30): 
We model the diffusivity as being proportional to the viscosity and inversely 

K = kp/p = kRp@/P, (13.1) 

where k is a dimensionless constant. For nitrogen k = 1.25, while for the higher 
molecular weight constituents k will be smaller. (Our illustrative numerical examples 
are based upon the value k = 0.15, which is more representative of the hydrocarbon 
fuel.) 

Conveniently, the integrand in (8.4) for the intrinsic coordinate f ;  is proportional 
to p(x )  : 

(13.2) 
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FIQURE 7. Main contribution a2(L) to the temporal variance for varied pressure ratios, with the flow 
specification (13.6). Doubling the length L increases a2(L) by a factor of four. For a lower molecular 
weight fuel with double the diffusivity, the temporal variance would be halved. 

where the flow rate constant F is given by (12.4). Thus, in the isothermal case, with 
p ( x )  constant, the intrinsic coordinate 6 is proportional to x .  Also, the integrand 
required in the double integral formula (9.2) for the temporal variance is proportional 
to the slowness: 

(13.3) 

So, in the isothermal case, an exponential variation for a 2 / K  corresponds to an 
exponential variation for the velocity a. This justifies the use in figure 6 of a 
logarithmic plot in order to test the applicability of the single integral formula (11.5) 
for cr2(L). 

In the isothermal case with exponential pipe geometry, and laminar Poiseuille 
flow, the single integral formula (11.5) can be written 

} dx.  
1 -exp (2a(x/L) -201) exp ( 2 a ( x / L ) )  - 1 

+Pi  
2a 201 

32L2 

(13.4) 

It is the Pi term in the integrand that strongly weights the spreading to the high- 
pressure end of the sampling tube. If we assume that 162 is large compared with (al, 
then the further approximation (11.10a) is applicable, and we obtain the explicit 

This is independent of the reference radius a,, and scales as the square of the pipe 
length. 

The sharpness of the response is extremely sensitive to the length L of the sampling 
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tube. Thus, the measuring equipment should be as close as possible to the engine 
(subject to the survival of the equipment). The inverse dependence of u2 upon the 
thermodynamic temperature 0, indicates that the sampling tube should be kept as 
hot as possible. Heating the tube has other practical advantages such as the 
elimination of condensation of fuel droplets on the wall of the capillary (N. Collings 
1988, personal communication). Similarly, the inverse dependence of v2 upon the 
constant k, indicates that the higher molecular weight chemical constituents are 
more subject to spreading. (Hence our using a value of k appropriate to fuel and not 
to air, in the illustrative examples.) 

Figure 7 shows the temporal variance u2 as a function of the pressure ratio Po/PL 
for the parameter values 

L = 0.3 m, k = 0.15, R = 287 m2 s-‘ K-l , 0 =500K. (13.6) 

In particular, a t  our standard pressure ratio of 10: 1 and with constant capillary 
radius (a = 0), the formula (13.5) yields the astonishingly sharp response 

a2(L) = 1.4 x s2 with a = 0. (13.7) 

This is compatible with the estimate 0.9 x s for the response time obtained 
experimentally by Collings (1988, figure 3). There is a marked deterioration in the 
sharpness of the response at low pressure ratios. Thus, for low pressure engines it is 
advantageous to reduce the pressure PL within the monitoring equipment. 

For a fixed pressure ratio, the sharpest response is a t  

a = In (Po/PL) (13.8) 
(i.e. the constant-velocity case). The dotted curve in figure 7 shows this optimal 
response. It is a t  low pressure (when the accuracy is worst) that a uniform radius 
(a = 0) is optimal for isothermal flows. At our standard pressure ratio of 10: 1 the 
optimal horn shape sharpens the temporal variance to 

a2(L) = 6 x lo-’ s2 with a = 2.3. (13.9) 

For comparison, we record that the formula (1 1. lob)  for the deficit variance A2(L) 
is uk sinh a 

2 L  - [exp ( - a) Pi + exp (a)  Pi]. A ( - 1536ak2R2p2@ 
(13.10) 

Using the parameter values given in (12.10), (13.6), we obtain 

d2(L) = 1 . 4 ~  lo-* s2 for a = 0, (13.1 l a )  

d2(L)  = 6 x lo-’ s2 for a = 2.3. (13.11 b)  

The disparity between u2 and A 2  confirms that the sampling tube is indeed 
sufficiently long for the applicability of the present analysis. 

14. Optimization 
In the slowly varying limit (ll.lOu), the non-isothermal counterpart to equation 

For fixed p(x)  and 0(x)  we can optimize for u4. The first variation with respect to 
Sa4 yields the optimization condition 
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The solution for a4 is 

a4 = constant x ,u&exp (2a 1 6I-i dz' / I 0-i dz') , 
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(14.3a) 

with a = In (Po/PL). (14.3b) 

Thus, in the isothermal case an exponential shape with the value of u given by (13.8) 
is optimal with respect to all possible shapes. 

The minimum temporal variance is 

a2(L) = 3kR In ' (Poll'') [ IB:d.]'. (14.4) 

This formula shows the relative importance of the coldest part of the capillary, and 
hence the efficacy of heating the sampling tube. 

I wish to  thank George Batchelor and Nick Collings for drawing my attention to 
this problem. Financial support from The Royal Society is gratefully acknowledged. 

Appendix A. One-mode approximation 

provided that we can reproduce the property (9.4): 
The principal contribution 8 to the temporal variance will be accurately modelled 

J O  

Similarly, the deficit variance A 2  associated with the end points will be accurately 
modelled if we can preserve the property (10.4): 

To avoid the need to evaluate all the coefficients, $n,hn we define the function 

(a dimensionless counterpart 
It is easy to verify that 

to the time-lag functions G(+), G(-)). 

Furthermore, G* satisfies the equations 

with 

1 d dG* u ;&.) = 4-1, 

dG* 
- = 0  on r = 1 ,  
dr 
- 

and uG* = 0. (A 5 c )  

G * ( r )  = &{  - 1 +4r2-2r4} .  

which can be solved without involving q5, or A,. In particular, for Poiseuille pipe flow 

(A 6) 



42 R. Smith 

In  terms of G* we define the one-term approximations 

By construction, the one-mode approximations correctly reproduce the results 
(A 4a, 6 ) :  

So, both g2 and A 2  are accurately modelled. 

Appendix B. The small effect upon the flow of non-uniform advection 

uniform advection in the momentum equation : 
For the constant-radius isothermal case it is easy to investigate the role of non- 

As in $12, we use the perfect gas law to eliminate p in favour of P, and the 
conservation of mass flux F to eliminate ti: 

dP 8pFRO 4F2ROdP 
dx a4P 3a4P2 dx' 

-_ - 

This equation can be integrated to  give an implicit formula for P(x) : 

Hence, the non-uniform advection is associated with the logarithmic term. 
Matching with the engine pressure Po a t  x = 0 yields a quadratic equation for the 

mass flux F .  We can write the solution for F as a perturbation about the linear 
solution : 

(B 4) 
a4 Pi-P: F = -  

8RpOL 1 + (1 + 6);'  

where 
a4[P: -Pi]  In (P,/P,) 

96p2ROL2 . 
€ =  

For small e the error associated with the neglect of non-uniform advection is of 
order g. 

To estimate e we can use the simplified solutions given in $12. For a constant- 
radius, isothermal flow the Reynolds number is constant 

Hence, we arrive a t  the estimate 
aRe 
6L 

6 = -In (Po/PL). 
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So, for $ to be small, and for non-uniform advection to be unimportant, it  suffices 
that the Reynolds number is less than L / a  (typically 6000). This is well satisfied for 
the examples considered in the above paper. 
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